青鱼的营养研究

李 丹1,李国富2,陈 森3

(¹上海水产大学生命科学学院 200090; ² 通威集团有限公司; ³ 深圳出入境检验检疫局)

摘要:对青鱼的消化生理及营养需求的研究进展进行了综述,并对有关问题给予讨论。 关键词:青鱼:消化生理:营养需求

中图分类号:S963 文献标识码:A 文章编号:1003-1278(2006)02-0083-03

青鱼 Mylopharyngodon piceus (Richardson)为肉食性 鱼类,传统饲养青鱼的饵料主要为贝类(螺、黄蚬等);然 而,进入20世纪80年代以后,由于我国江河、湖泊水域污 染逐年加剧,致使天然贝类资源不断下降,严重影响了我 国青鱼养殖业的发展。为此,不少学者开展了有关青鱼 营养学和饲料学方面的研究,"六五"、"七五"、"八五"科 技攻关项目都取得了成功。但目前在青鱼饲料应用中仍 存在着诸多问题,为此,本文对青鱼的消化生理和营养需 求进行了综述,以期为今后青鱼饲料的改进提供理论依 据。

1 消化生理

为了加强配合饲料养鱼的效果,必须考虑到饲料中营养成份是否能满足鱼类生长发育的需要,而且不同鱼类对所摄取饲料的营养物质有不同的消化能力。因此,了解有关青鱼消化生理的特点,对于提高配合饲料养殖青鱼的产量就显得尤为重要。

王道尊等[1]测定了青鱼鱼种对鱼油(马面鱼电鱼油)、牛油、豆油和玉米油的消化率,分别为 81.06%、77.40%、80.32% 和 89.72%,认为青鱼对含有多不饱和脂肪酸、熔点低的脂肪源饲料消化率都很高,达 81%~89%;同时,他们还发现消化率最低的牛油组生长效果仅次于鱼油,显示了较高的营养作用,而消化率最高的玉米油组生长效果却最差,这可能与不同脂肪源饲料在体内分配过程中,为生长所利用的效率不同有关。

刘玉良等^[2]以三氧化二铬(Cr₂O₃)为指示剂测定了青鱼鱼种对 14 种常用饲料的表观总消化率以及营养物质的消化率,并测算了总能、能量·蛋白比(C/P)以及可消化能(D/E)。结果发现,在水温 25~28℃的试验条件下,青鱼对营养物质的消化率有以下特点:①饲料中粗纤维含量与总消化率呈明显的负相关;②粗蛋白含量与蛋白质消化率呈抛物线相关,当蛋白质在 35%~40% 时,蛋白质消化率最高;③青鱼对脂肪的消化率很高,达 90%以上;④青鱼对碳水化合物具一定的消化能力。其具体数值如表 1 所示。

表 1 青鱼对饲料原料的表观消化率

	总消	粗蛋白	粗脂肪	总糖	总能/	可消
原料	化率/	质消化	消化	消化		化能/
	%	率/%	率/%	率/%	kJ·kg ⁻¹	kJ·kg ⁻¹
酪蛋白	93.8	97.9	89.0	-	16451.5	16054.01
饲料酵母	82.1	90.5	76.6	80.0	14012.2	11836.54
糊精	74.9	-	-	78.0	16736.0	13054.08
豆饼粉	74.9	93.1	85.0	72.0	13857.4	11815.62
脱脂蚕蛹粉	72.9	82.4	99.0	65.0	17083.3	13995.48
玉米粉	72.6	80.9	91.0	73.0	15635.6	11962.06
麩 皮	69.5	87.0	71.0	69.0	12698.4	9305.22
大麦粉	66.9	74.6	82.8	71.5	15020.6	10991.37
棉仁粉	64.5	85.5	57.0	60.5	12761.2	9824.03
药用鱼粉	64.5	83.6	99.0	61.0	13895.1	11664.99
脱脂花生	57.1	91.1	96.7	66.0	11112.7	9359.61
菜饼粉	45.9	89.5	64.6	59.0	11882.6	8945.39
苜蓿粉	36.3	83.5	93.8	62.2	7414.5	5263.47
青草粉	22.0	44.2	23.3	52.0	7221.9	3496.99

2 营养需求

2.1 蛋白质营养

杨国华等^[3]采用酪蛋白梯度法,求得青鱼夏花饲料的最适蛋白质需要量为 41%,并根据试验结果提出 2 龄青鱼和老口青鱼的应用饵料中蛋白质含量为 33% 和 28% 是适当的。王道尊^[4]在相关研究中表明,青鱼鱼种饲料中的最适蛋白质含量为 29.54%~40.85%。 戴祥庆等^[5]用酪蛋白和明胶作为蛋白源,以体重 3.5g 的青鱼为实验对象,研究其饲料中的最适能量蛋白比,结果表明,青鱼鱼种配合饲料中的蛋白质含量 35%~40% 为宜。所以一般认为,青鱼对蛋白质的需要量在夏花阶段为 40%,鱼种阶段为 35%,食用鱼阶段为 30%。

青鱼同其它淡水鱼类一样,10 种必需氨基酸为赖氨酸(Lys)、色氨酸(Trp)、蛋氨酸(Met)、异亮氨酸(Ile)、亮氨酸(Leu)、精氨酸(Arg)、组氨酸(His)、苯氨酸(Phe)、缬氨酸(Val)、苏氨酸(Thr),其需要量如表2。蒋艾青等^[6]在青鱼饲料中添加0.2%的组氨酸(试验饲料中粗蛋白为43.31%),表明青鱼饲料添加组氨酸可以提高青鱼的生长速度,降低饲料系数,减少青鱼养殖成本;并且试验组(添加0.2%组基酸)鱼肉品质高于对照组(不另加组氨酸),而且营养价值高,对无机物转化率高,表明了组氨酸能促进青鱼对各种营养物质均衡有效地吸收。

收稿日期:2005-10-14

作者简介: 李丹, 1982 年生, 女, 黑龙江佳木斯人, 在读硕士研究生, 研究方向为水产动物营养学。

表っ	青鱼鱼种对必需氨基酸的需要	
कर ∡	再旦 监州 20 公前 数 基 级 10 带 爱 1	

_	项目	赖氨酸	色氨酸	蛋氨酸	异亮氨酸	亮氨酸	精氨酸	组氨酸	苯氨酸	缬氨酸	苏氨酸
-	占饲料百分比	2.40	2.50	1.10	0.80	2.40	2.70	1.00	0.80	2.10	1.30
占 <u>1</u>	同料粗蛋白百分 比	6.00	1.00	2.80	2.00	6.00	6.80	2.50	2.0	5.25	3.25

注:饲料中蛋白含量均为 40%, 酪蛋白含量为 0.5%, 胱氨酸含量为 0.32%。

2.2 碳水化合物(糖类)营养

鱼类是天生的糖尿病体质,对糖的利用率不高。由于青鱼属于肉食性鱼类,对糖的利用率就更加有限了。 然而,糖类是鱼类的生长所必需的一类营养物质,也是3种可供能量营养物质中最经济的1种。

王道尊等[4]报道了饲料中蛋白质和糖的含量对青鱼 鱼种生长的影响,指出饲料中糖含量对肝糖含量有直接 的影响,呈线形正相关关系,其回归方程为: y=4.1755 + 0.4756 x (r=0.9541); 饲料中蛋白质和糖含量之间存在 明显的交互作用, 当蛋白质含量为 37.0%~43.3%、糖 含量为 9.5%~18.6%时, 青鱼鱼种生长最快; 饲料中糖 含量过高会使青色对蛋白质的消化率降低, 当饲料中糖 含量在30%以下时,蛋白质消化率大约保持在92.0% 左右,而当糖含量上升到43%时,蛋白质消化率反而降低 到 86.4%。综合这些关系和结果,王道尊等认为青鱼鱼 种配合饲料中, 当蛋白质含量为 30%~41% 时, 添加 20% 左右的糖较为合适。杨国华初步试验则认为[7], 饲 料中糖含量为30%时青鱼生长最好,在25%~30%的 范围内均获得相对理想的生长效果,并建议青鱼鱼种、1 冬龄鱼种和食用鱼饲料中的糖类适宜含量分别为 30% 、 35%、35%。周文玉等[8]通过研究提出青鱼饲料中糖的 适宜量为25%~35%。因此,我们可以认为当年青鱼鱼 种、2 龄青鱼鱼种和食用鱼饲料中可消化糖类的适宜含量 分别为30%、30%和35%。

虽然鱼类自身不具备纤维素分解酶,不能直接利用粗纤维,但饲料中含有适量的纤维素对维持消化道正常功能是必需的,并且从饲料生产的角度讲,在饲料中适当配以纤维原料有助于降低饲料成本,拓宽饲料来源。上海水产研究所的研究表明^[9],当饲料中纤维素含量过高(24%)或不含粗纤维时,青鱼生长速度均不理想,且饲料系数高,蛋白质效率下降;当纤维素含量为8%或16%时,青鱼均可表现出良好的生长速度,其中8%纤维素组具有较低的饲料系数和较高的蛋白质效率。因此,建议青鱼饲料中纤维素含量以不高于8%为宜。

2.3 脂类营养

饲料中适宜的脂肪含量不但可以有效地促进鱼类生长,还可起到节约蛋白质的作用。王道尊等[10]以马面鱼电鱼油为脂肪源,以增重率为评价指标,得出2龄青鱼鱼种和当年青鱼鱼种对脂肪需要量的最佳点分别为6.2%和6.7%;当饲料脂肪含量在3%以下或8%以上时,青鱼均表现出鱼体消瘦、生长不良和增重率下降,因此认为青鱼鱼种饲料中脂肪最佳需要量为6.5%。鉴于成鱼阶段对脂肪的需要量低,建议1冬龄鱼种和成鱼饲料中脂肪含量分别以6.0%和4.5%左右为宜。

王道尊等^[1]以马面<u>使</u>鱼油、牛油、豆油、玉米油为脂肪源配制脂肪含量为7%的4种饲料、饲喂1龄青鱼种,

结果发现添加鱼油组的青鱼增重效果最佳,牛油组优于豆油组和玉米油组。不同脂肪源作用效果差异的一个重要原因是所含的必需脂肪酸不同。一般认为淡水鱼类的必需脂肪酸有4种;亚油酸(18:2n-6)、亚麻酸(18:3n-3)、二十碳五烯酸(20:5n-3)和二十二碳六烯酸(22:6n-3)。王道尊等[11]进行了必需脂肪酸对青鱼生长影响的初步观察,发现当饲料中缺乏脂肪(无脂肪组)或缺乏必需脂肪酸(仅添加5%月桂酸)时,均表现出眼球突出、竖鳞、体色变黑、鳍充血和死亡率较高等现象;添加6%鱼油组青鱼的增重效果最佳;单一添加1%亚油酸或1%亚麻酸,生长情况良好;而添加1%亚油酸+2%亚麻酸,或2%亚油酸+1%亚麻酸,或1%花生四烯酸(20:4n-6)时,对改善青鱼的生长效果均不理想。

2.4 能量营养

有关青鱼能量需求的研究不多。戴祥庆等^[5]以酪蛋白和明胶作为蛋白源,配置成蛋白质含量为 35%~40%的实验饲料,用增重率、蛋白质效率、饲料系数等作为评定指标,得出青鱼鱼种配合饲料中总能(GE)为 13 377~15 288 kJ/kg,能蛋比(C/P)为 38.2 kJ/g 是适宜的;王道尊等^[12]以精制配合饲料投喂青鱼夏花鱼种,通过正交试验得出,青鱼配合饲料中可消化能(DE)的适宜需求量为14 592.0~16 426.2kJ,最适能蛋比(DE/P)为 41.034~49.560 kJ/g。

2.5 维生素营养

有关青鱼对各种维生素的需要量还缺乏系统的研究。王道尊等[13]通过研究表明,青鱼对 VC-2-硫酸酯 (AAS)利用率很低,即便饲料中添加 AAS 达 2 083.3 mg/kg(含 VC 1 000 mg/kg),青鱼仍表现出体表出血、脊柱侧弯等 VC 缺乏症状。冷向军等[14]采用 VC-2-多聚磷酸酯(LAPP)和包膜 VC(CAA)为 VC 的来源,通过试验得出鱼种饲料中 VC 适宜添加量为 200 mg/kg(VC-2-多聚磷酸酯)或 400 mg/kg(包膜 VC)。

李军等用去维生素酪蛋白和明胶作饲料蛋白源,以青鱼小规格鱼种为研究对象,在 11 个试验饲料中每组缺1种水溶性维生素,并以不缺乏维生素的完全饲料作为对照组进行试验研究^[15];结果表明,对青鱼的生长具有较为严重影响的维生素依次为: 氯化胆碱、泛酸钙、生物素、肌醇、烟酸、VC和 VB₂;而叶酸、VB₁、VB₆影响较弱; VB₁几乎无影响。对试验鱼死亡率有影响的维生素依次为: VB₆、VC、VB₂、肌醇、生物素、烟酸。上海研究所^[16]建议应用于青鱼维生素的配方如表 3。

综合以上材料,可以看出胆碱、肌醇、烟酸、生物素、 泛酸、VB₆、VC、VB₂等对青鱼种生长发育至关重要。

2.6 矿物质营养

石文雷等[15]对青鱼配合饲料中 5 种矿物元素的适宜 含量进行了研究,试验结果表明,磷的含量为 0.57%,钙 为 0.68%, 镁为 0.06%, 铁为 41 mg/kg, 锌为 92 mg/kg。 汤 峥 嵘 等 [16]研 究 表 明, 青 鱼 对 钙、磷的需要量分别 为 0.58% ~ 0.78%、0.42% ~ 0.62% (水 中 含 钙、磷 为 39.1mg/kg 和 0.005 mg/kg)。冷向军等 [18] 通过研究 表明, 饲料中添加 4.5g/t 的铜可以满足青鱼鱼种和青鱼 夏花的对铜的需要。上海水产研究所在饲养青鱼时使用的无机盐配方效果良好 [16]; 王道尊等结合有关资料 [19], 配制了 4% 添加量的无机盐添加剂用于养殖生产, 取得了良好效果, 其配方组成见表 4。

表 3 青鱼维生素添加剂配方

维生素	含量/mg·kg ⁻¹
VB _i	5
VB_2	10
VB_6	20
VB_{12}	0.01
VC	50
VE	10
VK	3
烟酸	50
泛酸钙	20
叶酸	1
VA	5 000 IU
VD	1 000 IU

表 4 青鱼无机盐添加剂配方

 无机盐	上海水产研究所[16]/	王道尊[19]/
人が底	g·kg ⁻¹ 干物质	%
硫酸镁	_	12.50
磷酸氢钙(2H ₂ O)	14.415	75.70
柠檬酸		5.10
硫酸锌(7H2O)	0.220	1.47
氯化钠		1.03
硫酸锰(5H2O)	0.092	1.13
硫酸铜(5H ₂ O)	0.020	0.13
碘化钾	0.0016	-
氯化钴	0.001	0.067
钼酸铵	0.0004	0.027
硫酸亚铁(7H ₂ O)	0.250	2.74
碘酸钾	_	0.106

3 小结

近年来,由于人们对青鱼的需求量不断增加,而天然 贝类的不断减少,使得配合饲料养殖青鱼被越来越多的 养殖户所青睐。龚希章等^[20]通过生产证实,用配合饲料饲养青鱼,总净产可达 11 326 kg/hm²,饲料系数为 2.1~2.2,青鱼生长快、成活率高,其经济效益比投喂螺蛳的对照组高 20%~25%。陆仁俊等^[21]通过 2 年的试验证明,青鱼配合饲料营养齐全,可以全部替代天然饲料或大部份天然饲料,采取主养青鱼方式可获得青鱼高产。商品青鱼单产可达 5 250~7 500 kg/hm²,经济效益超过传统养殖方式的效益,毛利约在 45 000 元/hm² 左右。由此可见,采用配合饲料养殖青鱼可大大降低生产成本,且降低了饲料蛋白质的使用量,从而节约了昂贵的蛋白质资源,

减少了鱼类排泄物中的氮含量,对于保护水环境具有重要意义。因此,应大力推广配合饲料养殖青鱼。

参考文献:

- [1] 王道尊,等.不同脂肪源饲料对青鱼生长的影响[J]. 水产学报,1989,13(4);370~374.
- [2] 刘玉良,等.青鱼对十四种饲料的消化率[J].水产科技情报,1990,(6):166~169.
- [3] 杨国华,等.夏花青鱼饵料中的最适蛋白质含量[J]. 水产学报,1981,5(1):49~54.
- [4] 王道尊,等. 饲料中蛋白质和糖的含量对青鱼鱼种 生长的影响[J]. 水产学报, 1984, 8(1):9~15.
- [5] 戴祥庆, 杨国华. 青鱼饲料中最适能量蛋白比的研究[J]. 水产学报, 1988, 12(1): 35~40.
- [6] 蒋艾青,等.青鱼饲料中添加组氨酸的试验[J].中国水产,2002,(6):67,73.
- [7] 李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社,1996,34
- [8] 周文玉.青鱼配合饲料中碳水化合物适宜含量的研究[C]. 饲料科技发展新途径——全国畜牧水产饲料开发利用科技交流论文集(水产部分). 中国科协学会工作部(北京), 1988.118~122.
- [9] 李爱杰,水产动物营养与饲料学[M],北京,中国农业出版社,1996.35
- [10] 王道尊, 等. 饲料中脂肪的含量对青鱼鱼种生长的 影响[J]. 水产学报, 1987, 11(1):23~28.
- [11] 王道尊,等.必需脂肪酸对青鱼生长影响的初步观察[J].水产科技情报,1986,(2):4~6.
- [12] 王道尊,等.青鱼配合饲料中可消化能需要量的研究[J].水产科技情报,1992,19(2):38~42.
- [13] 王道尊,等.青鱼对坏血酸-2-硫酸酯吸收利用性能的研究[J].水产科技情报,1996,23(4):151~
- [14] 冷向军,等.青鱼鱼种饲料中不同剂型维生素 C 适宜添加量的研究[J].四川农业大学学报,2002,20 (2):141~143.
- [15] 石文雷,陆茂英.鱼虾蟹高效益饲料配方[M].北京:中国农业出版社,1998.49~51.
- [16] 关爱江. 鱼类营养与饲料学[M]. 成都: 电子科技大学出版社, 1992, 92~93.
- [17] 汤峥嵘,王道尊,异育银鲫及青鱼对饲料中钙、磷需要量的研究[J].上海水产大学学报,1998,7(增刊):140~147.
- [18] 冷向军,等.青鱼对铜需要量的研究[J].上海水产 大学学报,1998,7(增刊):130~134.
- [19] 李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社,1996.21
- [20] 龚希章,王道尊,等.配合饲料养殖青鱼的生产效果[J].上海水产大学学报,1997,6(4):295~300.
- [21] 陆仁俊,等. 颗粒饲料主养青鱼高产试验[J]. 科学 养鱼,1997,(10):39

(贵任编辑 万月华)